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Abstract—The main objective of this paper is to give a survey of
recent automatic optimization methods which either have found or
should find useful application in the area of computer-aided network
design. Huang’s family of algorithms for unconstrained optimization
is reviewed. The Fletcher method and the Charalambous family of
algorithms for unconstrained optimization, which abandon the “full
linear search,” are presented. Special emphasis is devoted to algo-
rithms by Bandler and Charalambous on least pth and minimax
optimization which can be readily programmed and used. Due to
work by Bandler and Charalambous, it is shown how constrained
minimax problems can be solved exactly as unconstrained minimax
problems by using a new approach to nonlinear programming. The
application of minimax optimization on the design of lumped-dis-
tributed active filters, problems for future investigation, and a
select list of references are also included.

I. INTRODUCTION

PTIMIZATION techniques are of great interest to
engineers and applied mathematicians. The former
group has a practical or semipractical problem demanding
solution, while the latter is challenged primarily by the
difficult task of obtaining theoretical eonditons for opti-
mality. Optimization techniques are needed in the fre-
quent case when the synthesis procedures of classical
theory are for some reason inapplicable, e.g., if the circuit
structure to be designed is too complicated to permit a
formal synthesis procedure. Over the past decade, there
has been a steady shift in applied optimization from the
status of an art to that of a scientific discipline. To a large
degree this shift is due to the development of high-speed
computers and of fast optimization algorithms. This
paper presents some recent automatic optimization meth-
ods which have found or should find useful application in
the area of computer-aided network design.

It will be apparent from the unified treatment of gradi-
ent algorithms for unconstrained optimization due to
Huang [17] and to a recent theorem by Dixon [2], why
there has not been much improvement in the area of un-
constrained optimization from 1963 to 1970. Also, from
Property 1 of Fletcher [37], it will be clear why some
workers have reported success with the Fletcher—Powell
algorithm [4] without “full linear search.” The Charalam-
bous family of algorithms [5] for unconstrained optimiza-
tion, which is based on homogeneous models, is also
reviewed.
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Section III presents a unified review of least pth and
minimax optimization due to Bandler and Charalambous.
The difficulty of using least pth approximation in cases
when we have upper and lower response specification has
been completely eliminated by using the Bandler—Charal-
ambous generalized least pth objective function [6].
Furthermore, by using a simple secaling procedure, it is
possible to overcome the ill-conditioning of the objective
function for very large values of p and still have reasonably

.well-conditioned objective functions [7]. Large values of

p are required so that the least pth optimal solution is very
close to the optimal minimax solution [8]-[117]. Using the
generalized least pth objective function, the necessary and
sufficient conditions for minimax optimization can be
derived [127-16].

Unlike the usual case in which the value of p has to
tend to infinity so as to be able to get results very close to
a minimax solution, Charalambous and Bandler very re-
cently proposed two new algorithms for minimax optimiza-
tion in which any value of p greater than one can be used
to obtain the minimax optimum [177], [187]. Also it will
be shown that if we are investigating whether a particular
structure will satisfy design specifications in the minimax
sense, any single suitable least pth optimization will reveal
this!

From the results of Section IV it will be clear how any
suitable algorithm for unconstrained optimization, non-
linear unconstrained minimax optimization, least pth
optimization, or nonlinear programming can be used to
solve both the minimax optimization with constraints and
the nonlinear programming problem [ 177, [1971-217].

This paper is intended to be an extension of the review
paper presented by Bandler for the 1969 Special Issue of the
IEEE TranNsacTioNs oN MicrROWAVE THEORY AND
TecENIQUES on computer-oriented microwave practices
[97, where he thoroughly covers one-dimensional opti-
mization methods and multidimensional direct-search
optimization methods. For this reason these methods are
not, going to be considered in this paper (see also [22]).
Most of the material presented in this paper is based on
the author’s Ph.D. work [23].

TI. UNCONSTRAINED OPTIMIZATION

A. Fundamental Concepts and Definitions

The unconstrained optimization problem is to calculate
the minimum value of the scalar valued function U where

U 2U(4) (1)

and
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¢ L [nas- - ] (2)

U is called the objective function, and the column vector ¢
contains the % real independent variables. The term
‘“unconstrained’” implies that the value of each variable
can be any real number. Maximizing a funection is the
same as minimizing the negative of the function, so only
the minimization problem will be considered.

A point ¢ is called a global minimum of U () if

U($) < U(4) (3)

for all ¢. If the strict inequality holds for ¢ J), the
minimum is sald to be unigque. If (3) holds only in the
neighborhood of ¢, then ¢ is called a local minimum of U.

The first three terms of the multidimensional Taylor
series are given by

U(é + Ad)

= U(d) + VU () Ad + 347G () Ad 4+ (4)
where
Ad & [ApAdy: -+ A ]T (5)
represents the incremental change in the parameters,
NEEIE ©
01 O¢a 3¢ch

is the first partial derivative operator with respect to the
parameter vector ¢, and

G & v (V) (7

is the matrix of second partial derivatives, the Hessian
matrix, which is symmetric if it exists.

Assumlng the first and second partial derivatives eXISt
a point d) is a minimum of U if

vU($) =0 (8)

and the Hessian matrix is positive semidefinite at the
point ¢. This can be seen from (4).

Considering the first threg terms of the Taylor series
expansion about the point ¢, and bearing in mind (8),
we have

Ud) = (¢~ H76() (6 — ) + U@). (9)
Thus the function behaves like a pure quadratic in the
vicinity of ¢.
B. Multidimensional Gradient Strategies

In the rest of this section, methods are described which
utilize only the information of the first partial derivatives
to determine the direction of search to the minimum of a
differentiable function.

The iterative scheme, in general, is to find

{¢0,¢1,, . '}d)k)' . }
such that )
$¥ = it b (10)

and
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lim g(¢f) = 0 (11)

where
8 = qd? (12)
g=vU. (13)

dé is a k-dimensional vector which denotes the direction of
search and a: a scalar which takes the value of A minimizing
U (¢ + A\d?) along the direction d, resulting in

(gi)Tdé = 0.

Considering the first two terms of the Taylor series
expansion about the point ¢?, we have

U(¢* + M) = U(¢9) + MgH)Td" (15)
By definition, the direction \d‘ is a ‘‘downhill direction’ if

N—g9)Tdi > 0. (16)

(14)

In other words, the sign of «; is the same as that of
(—g")7d.
C. Huang's Generalized Algorithm [1]

If d* = — (G*%) g%, we have the Newton algorithm, and
if d° = —g’, we have the steepest descent algorithm.
Newton’s method has an excellent rate of convergence, if
it converges, but the method may not converge at all, and
it requires the second derivatives of the function to be
minjmized. On the other hand, the steepest descent
method is superior to Newton’s method in stability and
réquires only the first derivatives of the function, but
convergence is often very slow. Methods which combine
the good characteristics of these two methods and use
only first derivatives have been developed and are still
being developed. Common features of these algorithms
include the iterative approximation of the Hessian matrix
and the use of conJugacy properties to determine direc-
tions of search.

In 1970 Huang derived a general algorithm which is
based on the two ideas mentioned previously, and has the
property that it will terminate in at most £ iterations on
quadratic functions. Most of the existing conjugate-
gradient algorithms and variable-metric algorithms can be
obtained as particular cases.

Huang’s generalized algorlthm is based on the quadratie
model

Ud) =4 —$)T6(d— &) + U&). (7

The reason for a quadratic model is that it is the simplest
differentiable function that can have a well-defined
minimum.

From (17)
9(d) = G(o — &)
v = Gb = a,Gd* (18)
where
Y &gt — gt (19)
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From (18) and (14), we get

(—g)7a
ey 20
“ T @Hrea (20)
and from (18) and (20),
-1
(@HTd = ¥ ai(d)7Gd’, j=01,---1—2. (21)
=it

A set of nonzero vectors {d°d',---,d* 1} are G conjugate
if

(d)TGdi = 0, (22)

If G is positive definite, the k vectors {d°d,- - . d*1},

which are G conjugate, are also linearly independent.
Therefore, from (14), (21), and (22),

1¢7)1).7 = O;L"'yk — L

(gl)de = 07 .7 = 0717°"7l ~ L (23)
Let I = k, then
(gk)de = 07 7 = 0J17' "yk — 1. (24)

Since the elements of {d°d,---,d*'} are linearly inde-

pendent,
gt = 0. (25)

Therefore the minimum of a positive definite quadratic
function is attained in at most & iterations.

Let ‘
di = —(HY)"g’ (26)
where H? is a k X k matrix. From (22),
(g9"Hiy' =0, j=01,---72—1 (27)
and, from (23),
(g9%8'=0, j=01,---2—1. (28)
From (27) and (28),
Hiyi = p8), j=0]1,---i—1 (29)
where p is an arbitrary constant.
Let
H* = Hi + AH: (30)
then, from (29) and (30),
AHiy =0, j=01,---4—1 (31)
AHyi = pbi — Hiys, (32)
To satisfy (32), one can choose
A

where ¢f and ¢ are arbitrary k-dimensional column
vectors satisfying (c:")7y% 2 0 and (cf)Ty¢ # 0, respec-
tively. Also, AH? satisfies condition (31) if

(e)Ty =0 and

(@)Y =0, j=010i—1

(34)
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Also, from (12), (18), (22), and (29), we have

(05)Ty? =0 and (yH"Hiy' =0, ;7=0]1,-2-70~—1
(35)
Therefore,
¢t = Cy'8 + Co'(HY)Ty?
¢t = Ki'6' + Ko'(H)Ty? (36)

where Cv%, Cyf, Kif, and K, are scalars. Substituting for

¢’ and ¢*in (33), we obtain Huang’s generalized algorithm
8'5(011:871 _|__ Czi(Hi) TYvJ)T

o (Cyidi + Cyi (Hi)Tyi)Tyi

[H"“ = Hi

_ Hi.Y'i(KliSt' + Kzi(Hi)TYi)T:I (37)
(Klisi + K2i(Hi)TY-i)T-Yi

When ¢ = k,

H'Gd? = pdi, =01,k — 1. (38)

Since the elements of {d°d---,d*1} are linearly inde-
pendent,

H* = pG—. (39)

Therefore, H* is a symmetric matrix. If p is positive, H* is
positive definite. If p is zero, the matrix H* is the null
matrix, and if p is negative, the matrix H* is negative
definite.

Special Case 1: If we let p=1, Cf =1, Cof = 0,
Ky =0, and K,* = 1, then
8i(89)T  Hiyi(y))THi
BTy T () THY
This is the Fletcher and Powell [4] updating formula.
This updating formula has the property that if H° is a
positive definite symmetric matrix, then H* is also a sym-

metric positive definite matrix, i.e., o, > 0.
Special Case 2: If we let

Hit = Hi + (40)

0y — (86T . .
=1, ==z - — , Kyt = 1, and Ky* =
p Cr (89)Tyi + (vi)THiys 1 2
then
. O B(yOTHT  Hiy(89)T
ot = g — — — P
(Sz)Tyz (Sz)TY'b
(.Yi)THiyi> 8i(86)T
1 e ——. (41
+ ( MG WACE

This updating formula was discovered by Fletcher [3],
Broyden [247], and Goldfarb [257 and has the same proper-
ties as that of Fletcher and Powell.

Dixon [2] proved the following results for a general

nonlinear function:
(H*)Tg* = B.q° (42)

where 8. is a scalar defined by
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Bi = — (aiKy™! — Ky )

(Y'i——l) T (Hi——-l) Tgi—l

. 43
(Kli—l 51 _l__ Kzi—l (Hi—l) TYi—l) Tyi—l ( )

and ¢ is a k-dimensional vector defined by

(T _S_(Y_V» 07
q——(gﬂ(l (8) Ty (H""g

-2 f i1 B SZ(YZ)T)> o(89)Tg¢ ;
+ E} <l=IjI+1 (I (SZ)TYl (SJ)T.YJ' ¥

From (26) and (42), it can be seen that
di = —B.q" (45)

Equations (44) and (45) show that d* depends only on the
initial matrix H° and the value of p, and is independent of
the parameters Cv%, C»f, K%, and K,'. Therefore, if a
sequence of points ¢?is generated using a group of formulas
belonging to Huang’s family on the same general non-
quadratic function, then the necessary and sufficient con-
ditions for all the sequences to be identical is that all
formulas in the group possess the same value of p and the
same value of the matrix H°.

Since most of the algorithms introdueed by most of the
authors are members of Huang’s family with p = 1, they
should all give identical sequences of points if “full linear
search” is used. Due to the fact that the minimum in a
one-dimensional search cannot be found exactly, the
sequence of points generated might not be exactly the
same. Bearing all of the above in mind, it is clear why
there was little improvement in the area of unconstrained
optimization from 1963, when the Fletcher—Powell al-
gorithm was published, until 1970, when Fletcher came
up with the brilliant idea of avoiding the “full linear
search” subproblem.

(44)

D. Fletcher Algorithm [3]

The main disadvantage of Huang’s generalized algo-
rithm is the need to solve the subproblem of finding «; at
each iteration (the full linear search). The importance of
the full linear search is that it furnishes a property which
enables finite termination to be proved for quadratic
functions.

Fletcher replaced the property of quadratic termination
by a property which requires that, for a quadratic func-
tion with G strictly positive definite, the eigenvalues of
H must tend monotonically to those of G™! in certain
sense (he calls this Property 1). He has further shown that
(40) and (41) and any convex combination of them possess
Property 1. Because the Fletcher and Powell updating
formula satisfies Property 1 of Fletcher, it is clear why
workers had success in using this algorithm without full
linear search.

Use of (40) alone might cause H to become singular.
For this reason a choice is made between the two updating
formulas by the following test: if

(8)Ty! < (y)THy' (46)
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then formula (40) is used ; otherwise, formula (41) is used.
In the Fletcher method, the correction § is determined by
8 = — \Hyg, where the value of X is chosen to satisfy the
following inequality:

AU
p < 47b <1l—uyp (47)
where u is a preassigned small quantity. Note that the
expression between the inequality signs tends to one as A
tends to zero, and that if U(¢) is bounded below, this
expression tends to zero or to become negative as A tends
to infinity. Therefore, a suitable value of X exists. Fletcher
is confident that the choice of A = 1 is not too small.
Therefore, he tries the estimates A = 10~/ for 7 = 0,1,-- -,
and he accepts the first estimate that satisfies the left-hand
inequality of expression (47). In practice, he finds that
on most iterations the value of A = 1 is satisfactory.
A simple interpretation of which formula should be used

is given in the following equation:
Hf = pr —I— VVT (48)

where

) Hy
= (vTH N2 (2 _

o= (- B
and H;, H;, denote the Fletcher, and Fletecher and Powell
updating formulas, respectively. Let us suppose that the
function is quadratic; then replacing § by Gy, the
inequality (46) becomes yTG~'y < yTH,. This shows that
H is “larger” than G, and therefore the ‘“‘smaller” for-
mula Hy, is used. If y"G~'y > yTH,, then H is “‘smaller”
than G, and therefore the “larger” formula H; is used.
If equality holds, then no indication is given which for-
mula to use. In this case, H, is used to avoid possible
singularity in H.

E. Charalambous Family of Algorithms [5]

Jacobson and Oksman [267] derived an algorithm based
on the homogeneous model

U$) = % b — 9@ + UG 0

where v is the degree of homogeneity. Note that if vy = 2
and the Hessian matrix is constant, we have the quadratic
model discussed previously.
Charalambous [5] presented a family of algorithms
based on (50). From (50),
Ya=v (51)
where

v A dTg(d)
y" 2[g"(d)U(d) — 1]
af 2 [§yw]

w = yU($).
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Note that o contains the optimum parameter vector. At

some point ¢
(¥)Taf = vs. (52)

At any step we should satisfy (52) for all steps so far
made. Therefore,

Yiai = v* (53)
where
T (1
yial - v A
y"H* Vi

Using the ideas of Penrose [27], Charalambous derived
a very general recursive formula for a’. A special case of
the general formula is the following:

Pigitt (7)i+1 _ (yi+1) Tai)
(yi+l) TPiai+1

ot = g (54)

: Piai-{-l (yi—i-l) TPi

Pitl =
(y+) TPigitt

+ A+t (55)
where 47 is a (k 4+ 2) X (k 4+ 2) matrix, and @ is a

k 4 2 vector satisfying

Adgr+ = 0, (56)

j=1,n.

Py and @, can have any values, but for simplicity the
value P, = I'is used.

Let A% = ¢i(d¥)T where ¢* and d¢ are & + 2 vectors. It
is natural to choose d#*! = @i = e*!, where e™*! is a
unit vector of the same dimension as a*+! having unity at
the (¢ + 1)th element. Then (56) is satisfied, and it is
independent of ¢?. Therefore, ¢* can have any value. Equa-
tions (54) and (55) now become

Piett! (viys — (y1)7ar)

atttl = of (yit) TPigitt (57)
i . Piei+1(yi+1 TPi R R
P1,+I p— Pz —_— W _|__ C'L+l(e1,+l) T. (58)
Substituting
. Piei—l—l
C7'+1 by A W
where ) is any scalar quantity, we have
, . pz “+1 HINT P __ H+1y 7T
pin = pi_ PR A

(yi—{—l) TPiei+1

If X = 1, then we have the Jacobson—Oksman algorithm

[26].

Some important properties of Charalambous family of
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algorithms are 1) they do not require finding minima
along one-dimensional searches; 2) they converge in
k 4 2 iterations on homogeneous functions; 3) they do
not require the Hessian matrix to be nonsingular; and
4) if oy and @' are two updating formulas, then
poitt + (1 — p) o will be an updating formula where
u can have any finite value.

F. Termination Criteria

Algorithms terminate after one or more of the following
criteria are satisfied: 1) if the change in the objective
function becomes less than ¢, a small positive number;
2) if the absolute values of the elements of the increment
vector become less than e, a small positive number; 3) if
the norm of the gradient vector becomes less than e,
another small positive number. As a safeguard the algo-
rithm should go through £ iterations after the terminating
criterion is satisfied, before the program terminates. Even
if all of the above criteria are satisfied, it will be safer if
we make a small perturbation from a point which satisfies
the previous eriterion and continue the iteration from the
perturbed point. If the point ultimately reached from the
perturbed point is substantially different from that ob-
tained originally, then it is wise to treat any results with
suspicion.

Some other interesting papers on unconstrained opti-
mization are given in [287-[35].

III. NoNLiNEAR LEAST pTH AND MINTMAX OPTIMIZATION

Consider a system of m real nonlinear functions

fi(d), el (60)

where

I 2{1,2---m}.

Let
M.(¢) 2 maxf (d). (61)
el
The problem of minimax optimization of (60) consists of
finding a point ¢ such that

Mi($) < M($)

for all points ¢ at least in the neighborhood of x\j;

Various algorithms have been proposed for solving the
above problem. Some of the most relevant make use of the
generalized least pth objective function of Bandler and

Charalambous [6], [7].

A. Bandler—Charalambous Generalized Least pth Objectives
(61, [7]
If fi(¢) = 0 for ¢ € I, then it is very well known that

Ms(¢) = lim Uyt () (62)
where
UgH(d) = (X (f(d))»)Vn. (63)

iel



294

Bandler and Charalambous considered the most general
case, in which some of the f; for 7 € I are nonnegative or
all of the f; for ¢ € I are negative. As we shall see later,
this general case occurs in many engineering problems,
such as in filter design problems. In the case where at least
one of the f; is nonnegative,

M;(¢) = lim Upy*(¢) (64)
where in this case, a
Upst(¢) = (i;@) (f.(§))7)He (65)
and
J($) = {z]fi(¢) 20, i€} (66)

In other words, in forming U,*(¢), we consider only the

functions which are nonnegative.
In the case where f;(¢) < 0 forallz € I,

M;(¢) = lim U,~(4) (67)
where
U (¢) = — (X (— fi($)) )l (68)

gel

In other words, in forming U,~(¢), all the functions have
to be considered.

This shows that by minimizing the objective functions
given by (65) and (68) with very large values of p, we
should obtain results very close to the minimax optimum.
Without any modification this will apply only in theory,
due to ill-conditioning resulting from the numerical eval-
uation of [ = f.(¢) J=? for very large values of p. Bandler
and Charalambous [7] were able not only to alleviate this
ill-conditioning problem, but also to combine the two
objective functions given by (65) and (68) into the one
objective function, namely,

Uy(d) = Mf<¢>< > (”"’) ))/ for M,($) # 0
1eK (¢) Mf(¢)
= (, for M;(¢) =0
(69)
where
AMf(d)) 1<p< o, for M; > 0
T2 1
4 1<p< oo, forM;,<0 (70)
v J (), if M;>0
K($) 2
1, if M;<0. (71)
The gradient vector of the combined objective function
is given by
f1(¢) )q)(llq)—l
vU, =
(@) (i;‘:@ (Mf<¢>

) ) 4
m%(:@ (M/(d)) v fi(d), for M;(¢) = 0. (72)
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From (69) and (72) it can be seen that if fi(¢) for
1 € I are continuous with continuous first partial deriva-
tives, then, under the stated conditions, the objective
function 1s continuous everywhere with continuous first
partial derivatives (except possibly when M,($) = 0,
and two or more maxima are equal). Therefore, very
efficient gradient optimization algorithms can be used to
optimize (69). To overcome the difficulty which arises
when M;(¢$) = 0 and two or more maxima are equal (and
due to other reasons which will become apparent later),
Bandler and Charalambous minimize A/ (¢), where

M/ (¢) &maxf/(¢) = max (fi(d) — &)

el el

(73)

where £ is an artificial margin which is kept constant
through the optimization. If the algorithm gets stuck, we
increase the value of £ by a small amount and restart the
optimization process. It is important to note that the
parameter ¢ does not aﬁect the location of the minimax
optimum. If §= M,(¢) (M,’(&';) = Q) then any finite
value of p will yield the minimax solution!

This approach has been applied in the optimization of
microwave networks [7], [19], [36], digital filters [37],
and modeling problems [38], with values of p ranging
between 1000 to 1 000 000.

B. Conditions for Optimality [127], [13]

Of great practical importance to engineers and applied
mathematicians is the optimality of their approximation.
Bandler and Charalambous [127, [13] derived the neces-
sary and sufficient conditions for optimality in generalized
nonlinear least pth optimization problems for p — «. In
the limit, the conditions for a minimax optimization are
obtained [14-[167].

In order for a point ¢ to be a minimax optimum, it is
necessary [and in the case of the convexity of f.(¢) for
1 € I, also sufficient ], that

TV =0, w20 (74)

ied
Suw=1 (75)

where
Jatlilf(@) =M($), icIi.  (76)
The multipliers u; for 7 € J are given by
LS /M () )

i=1 77
wr = lim (z CF(&0) /M (3,) T )

teJ

where ¥p denotes the optignum parameter vector for par-
ticular values of p($w = ¢) and ¢ as given by (70).

C. Charalambous—Bandler Algorithms [177, [18]

Based on the above ideas, Charalambous and Bandler
were able to construct two new algorithms for minimax
optimization [177], [18]. Unlike their original approach
in which a very large value of p is required with the new
algorithms, any finite value of p in the range 1 < p <
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will produce extremely accurate minimax solutions. The
computational procedure for both algorithms is as follows:

1) Assume the starting point ¢° is given; set §' =
min [0,M;(¢") + €], r = 1. e is a small positive number.
2) Minimize with respect to ¢ the function

e \N\Ve
Ult) = M(48) ( (f ]fj’()d) = ))
7eK )
| for M(¢,&") =0 (78)
= 0, for M(q>,£’”) =0
where

M($,&) cmax (fi(¢) — &) = M;(¢) — &

1€l

(79)

and

(J($,) = ie I},

g=p,if M >0

{i[f(d) — 20,
K &
11 ¢=—p, iM<O. (80)

3) Let 4) denote the optimum parameter vector at the
rth step. If Algorithm 1, go to 4; otherwise, if M (d>’ g) <0,
go to 4; or else set

= 4 M (§E)
= (1= N)& + MM (§) (81)
where
o< N <1 (82)
and go to 5.
4) Set )
gt = My () + e (83)

5) Convergence criterion: If | &+t — & | < 9 stop; or
else set r = r + 1 and go to 2. ¢ is a small prescribed posi-
tive number.

Obviously, the larger the value of p is, the fewer will
be the number of sequential optimizations required to
reach a desired accuracy, but this does not mean that the
number of function evaluations will be fewer. Algorithm 2
is different from Algorithm 1 as long as M f(d)) > 0,
otherwise it is the same. The main difference is that in
Algorithm 1 we try to push the maximum away from the
level ¢ at the rth iteration, while in Algorlthm 2 we try
to predict the value of M,( ¢) by i 1ncreasmg & from zero
appropriately. Due to this fact, ¢ = —p for r = 2,3,-
for Algorithm 1, and for Algorlthm 2,qg=npifr <M f(d)),
and g = —pif &> M f(¢) The reason for inclusion of
is to avoid having M = 0, because in this case, when two
or more of the f. for ¢ € I are equal the objective func-
tion’s first derivatives are discontinuous.

It jcan be shown 1773 tha’c for both algorithms
| UE8) | =0, Mo($) — My ($), as 71— o.

D. Error Function [ 7]

Define real error functions related to
“lower” specifications, respectively, as [7]

“upper” and
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e(dy) 2w(¥) (F(dy) — Si(¥)) (85)
where

F () the approximating function (actual response);

S.(¢)  an upper specified function (desired response
bound) ;

S (¢) a lower specified function (desired response
bound) ;

w,(¥)  an upper positive weighting funetion;

wi(y)  a lower positive weighting function.

In filter design problems, for example, F(é,¢) will be
the response, ¢ may represent the network parameters, ¥
could be frequency, S,(¢) would refer to the passband
specification, and S;(¢) to the stopband specification. If
S.(¥) = Si(¥), wu(¥) = wi(¢), then e($¥) = e () =
e1(,¢), which is the conventional case (single specified
function). ‘

In practice, we will evaluate all the functions at a finite
discrete set of values of ¢ taken from one or more closed
intervals. Therefore, we will let, e..(¢) 2 e.(d,.) for
1 € I, and en.($) 2 ei(dy,) for ¢ € I, where

' Iu VAN {1:27"'1,”1;}
I & {n, + Ln, + 2,

oo,y + N} (86)

where n, and n; are the number of sample points over the
upper specification and lower specification, respectively.
Let

6uz(¢), for 7 e Iu
f.(4) & (87)
—611(4)), for ¢ S Il
and
I oL UL (88)
If
>0, the specification is violated
M:(4) 4 =0, the specification is just met
<0, the specification is satisfied.

The objective function (69) has a very important prop-
erty. If the objective function corresponding to the opti-
mum solution with any finite value of p greater than one
is positive (specification violated), then, at the optimum
point for all other values of p (even with p = «, ie,
minimax), it will be positive. Similarly, if it is negative
(specification satisfied), it will be negative for any other
value of p. Thus, if we want to investigate whether a par-
ticular structure will satisfy design specifications in the
minimax sense, any single least pth optimization will reveal
this (even p = 2)!

Other interesting papers for minimax optimization are:
Osborne and Watson [39], Bandler and Macdonald [40],
Bandler et al. [41], Lasdon and Waren [42], and Klessig
and Polak [43].
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IV. NoNLINEAR PROGRAMMING

A. The Nonlinear Programmaing Problem

The nonlinear programming problem can be stated as

minimize U (¢) (89)

subject to

gl(d’) >0, 1= 172)' c,m (90)

where U is the generally nonlinear objective function of &
parameters ¢, and gi($),g2($),- - +,g.(d) are, in general,
nonlinear functions of the parameters. We will assume that
all the functions are continuous with continuous partial
derivatives, and that the inequality constraints ¢g:(¢) > 0,
i=12-..,m are such that a Kuhn—Tucker solution
exists (see Lasdon [44] and Zangwill [45]).

Before the results of Section III were available, the
nonlinear minimax optimization problems were solved by
transforming them into nonlinear programs [46] and
solved by well-established methods such as the barrier-
function method of Fiacco and McCormick [47], [48].
Other methods of solving the resulting nonlinear programs
include the repeated application of linear programming to
suitably linearized versions of the nonlinear problem [39].
Very recently, Bandler and Charalambous transformed the
nonlinear programming problem into an equivalent un-
constrained minimax problem [217].

B. Bandler—-Charalambous Algorithm [21]

Consider the problem of minimizing the unconstrained
function

Vid,a) = nax LU($),U(d) — aigi(d)] (91)
where
a A [aons o [F (92)
and
a; > 0, 1= 12..-m. (93)

Under the stated assumptions, the following can be
proved [217]. '

If the Kuhn—Tucker necessary conditions for optimality
of the nonlinear programming problem are satisfied at J),
then positive ay,as,- - -, can be found satisfying

>¥ <

i=1 i

(94)

such that :i') satisfies the necessary conditions for optimality
of V($,a) with respect to ¢, where uz,us,- -+ ,un are the
Kuhn—-Tucker multipliers.

It 1s well known that w,us,- - -, u= are specific nonnega-
tive numbers, so that sufficiently large positive ay,as,* « + ,aim
must be chosen to satisfy (94). Since w1,us,* * <, U are not
known in advance, one may not be able to forecast their
values. If insufficiently large values of aias,---,an are
chosen although a valid minimum of V{¢,) may exist,
the constraints may not be satisfied at that point. A
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possible implementation is to use the results of Section
III.
Let

fi(d) 2U(d) — agid), ¢=12---;m (95)

and
fo(¢) = U(9) (96)
then the problem is to minimize
max /:(4) (97

where I 4 {0,1,---,m}. Therefore, any of the three
methods described in Section IIT can be used to solve the
minimax problem for selected values of c. If the optimum
parameter vector obtained is such that at least one of the
constraints is violated, the elements of & are increased,
and the optimization procedure repeated. In practice, a
tolerance for violated constraints should be specified.
There is no need to distinguish between feasible and
nonfeasible regions. Due to this fact, equality constraints
can be readily handled by transforming each one of them
into two inequality constraints (e.g., if h($) = 0, we can
transform it into the following two inequalities: h(¢) > 0,

—h(¢) = 0).
C. Constrained Minimaz Optimization I [17 ]
Let us suppose that we want to minimize M,(¢) given
by (61) subject to the constraints
gi(¢) >0, i=m+1,---m+n (98)

It is well known that the nonlinear minimax optimiza-
tion can be transformed into the nonlinear programming
problem

minimize z (a new independent parameter) (99)
subject to
z—fi(d) >0, 1=12,---ym (100)
and
gi(¢) >0, i=m+1Lecem+n  (101)

As we have already seen this nonlinear programniing
problem can be transformed into an equivalent uncon-
strained minimax problem, in which case the algorithm
presented in Section III can be used.

D. Constrained Minimazx Optimization 11

Let us suppose that we have the same problem as in the
previous subsection. Consider the minimization of the
following unconstrained minimax function:

W(pw) = max fi(¢) (102)
1<igmAn
where
Ji(d) & —wiygi(d), i=m+1,---;m+n (103)
W L [Wnis,* < Wnin] (104)
w; > 0, t=m+ 1,---,;m +n. (105)
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If at the constrained optimum M f(ci;) > 0 and at least
one of the constraints is active, the optimum point &')"’
which the method will give will be nonfeasible, but
Mi(¢*) < Ms(). If Ms(¢p) <0, then the optimum
which the method will give will be feasible. If reasonably
large values of the components of the vector w are used,
the optimum point of this method will be quite close to
true optimum. The resulting solution would be meaningful
in the engineering sense since tradeoffs between response
specifications and design constraints will be obtained.
Application of these two methods to microwave engi-
neering problems can be found in [197] and [207]. Other
interesting papers on nonlinear programming are given in

[287, [30], and [47}-[58].
V. ExaMPLE

E. Lumped-Distributed Active Filter

A third-order lumped-distributed active low-pass filter,
in the form of the network shown in Fig. 1, is considered
as an example. The problem is to be solved for minimax
results in 3 ways:

1) an attenuation and ripple in the passband, [0,0.7]
rad/s, of less than 1 dB, while the attenuation in the
stopband, [1.415, 0 ] rad/s, is at least 30 dB (second
amplifier not included) ;

2) keeping the attenuation and the ripple in the pass-
band at 1 dB and obtaining the best stopband
response;

3) minimizing the attenuation and ripple in the pass-
band subject to at least 30-dB attenuation in the
stopband.

Problem 1 has been previously studied from a computer-
aided design point of view, by Mokari-Bolhassan and
Trick [59], and Problem 2 by Newcomb [60] by using
synthesis methods. For both problems their results were
not optimum in the minimax sense.
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Fig. 1. Third-order lumped-distributed active lowpass filter.

{1.415,1.5,1.6,1.7,1.8,1.9,2.0,2.1,2.2,2.3,2.4,2.5,2.6,2.7,
2.8,2.9,3.0}.
For all three problems

’l,(,’ui(Fi—T), 1= 1,2,"',9 ‘

€yi =

wy:(Fi + 30),
el = U)li(Fi + 1),

where F is the gain in decibels, and r a small number
whose significance will become apparent later. From
(106), it can be seen that C; and R; appear together as
C:R, and therefore represent one variable. Hence C; was
kept fixed at the value 2.62 as given by Mokari-Bolhassan
and Trick.

For Problem 1, all the weighting factors were set equal
tol,r =0, and

d) = [A R C Ro Rl Cl:IT.

For Problem 2, the weighting over the passband was
set equal to 1, and over the stopband equal to 10~ and
r = 1073, The reason for the small weight in the stopband
is to give more e\mphasis to the “deviation” in the stop-
band. The small value of 7 is used because at zero fre-
quency the function F is equal to zero and by using the
approach described, would lead to M = 0 if r = 0. To
avoid the possibility of the error at zero frequency from
becoming active, it is necessary that the following in-
equality holds at the optimum point:

i=10,11,---,26 (108)
i=27,28---,35 (109)

The node equations for the circuit are r> M (&’),E) B (110)
Y2 + JoCh — (Y= + Y12) 0 i —Vl- i —yulVs i
A 1
- (y22 + Yy + —I_B—) Yn + Yo + Y2+ Y + B 0 Vol =1 (yu+ v2) Vs (106)
0 0
A 1
- = 0 — 4+ jCs || V 0
R i + JwC2 3_J

where yu, ¥, yu, and ¥ are the y parameters of the
uniform RC distributed line
1

V() = Z Vs.

It was decided to use 9 sample points in the passband, in
radians per second:

{0,0.1,0.2,0.3,0.4,0.5,0.6,0.65,0.7}

(107)

and 17 sample points in the stopband

For Problem 3 the weighting over the upper specification
was set equal to 1, over the lower specification to 10~ and
r = 1073, The same comments as those in Problem 2 hold.

For Problems 2 and 3,

b=[4 C R

with By = 1 and R = 17.786.

Optimization using the Fleteher method [3], in accord-
ance with the ideas discussed in Section III, with p = 2,
10, 100, 1000, 10 000 (p is increased after each optimum is

T
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TABLE I
OprMizATION OF THE CirculT SmowN 1N Fia. 1
Parameters A R C R, R Cy C,
Starting point (MBT=) 1.142 17.786 0.427 1.0 1.0 0.067 2.62
Optimum peint
Problem 1 1.00339 21.75063 0.47719 0.61713 0.95378 0.04525 kept fixed
Problem 2 1.25659  kept fixed  0.39304  kept fixed 1.01968 0.08975 kept fixed
Problem 3 1.11832  kept fixed  0.39287 kept fixed 0.68946 0.06639 kept fixed

& Mokari-Bolhassan and Trick (1971).

reached) gave the results shown in Table I. In all the
cases, the following parameter transformation was used to
keep the parameters positive:

¢ = exp &, (111)

where ¢." is used as a variable instead of ¢.. The adjoint
network approach was used for the calculation of the
gradients of F with respect to ¢’ [61], and can be found
in [23]. ’

The starting point in all three problems was the one
which Mokari-Bolhassan and Trick (MBT on the Figs.
2-4) called their optimum. The starting and the optimum
responses are depicted in Figs. 24, from which it can be
seen that the results of Mokari-Bolhassan and Trick are
not optimum in the minimax sense. It can be easily
checked that (110) is satisfied for Problems 2 and 3.

It is interesting to note that Problems 2 and 3 fall in the
framework of nonlinear minimax approximation with non-
linear constraints. That is, Problem 2 can be phrased as
“minimize the maximum of 17 nonlinear functions subject
to 18 nonlinear constraints and 4 linear constraints” and
Problem 3 as “minimize the maximum of 9 nonlinear func-
tions subject to 26 nonlinear constraints and 4 linear con-
straints,” which obviously is not so easy.

Problems 2 and 3 have also been solved by creating
violated specifications. For Problem 2, we set S, = 0 dB,
8; = 1 dB over the passband, S, < —35.3 dB over the
stopband, and use a reasonably large weighting factor

1415
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rad/sec

optimized
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dB 2.934%1072
-32 —
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WA IS N \1_// vl
2938%i62 /\
™! w
B 2934x1072
Fig. 2. Optimized gain of the circuit of Fig. 1 subject to the con-

straints imposed for Problem 1.
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Fig. 3. Optimized gain of the circuit of Fig. 1 subject to the con-

straints imposed for Problem 2.
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32
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Fig. 4. Optimized gain of the circuit of Fig. 1 subject to the con-
straints imposed for Problem 3.

over the passband. For Problem 3, we set S, = S; = 0 dB
over the passband, S, = —30 dB over the stopband, and
we use 4 reasonably large weighting factor over the upper
specification. For both problems the zero frequency can
be neglected. The results obtained were in very good
agreement with those shown in Table I.

VI. CONCLUSIONS

When preparing this paper, the author had in mind the
question of future investigation. Four separate subjects
are recommended for future research.
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Extrapolation techniques can be applied for both
algorithms presented in Section IIT on ¢ and # separately
or simultaneously, which can accelerate the convergence.
This will also have an impact on the new method of non-
linear programming. Fiacco and MeCormick [537, for
example, have applied extrapolation techniques in their
method of solving the nonlinear programming problem.

One of the main disadvantages of the original Fiacco—
MecCormick approach to nonlinear programming is that
the function is undefined outside the feasible region. What
this author proposes is a ‘“negative to positive barrier
method” through the constraint boundary. In other
words, the function is to be finite and positive outside the
feasible region and negative inside the feasible region, if
the starting point is feasible.

An automated method is needed to recognize a redun-
dancy in the variables of a design problem. A redundant
variable can cause ill-conditioning. An excellent example
is the lumped-distributed active filter studied in Section
V. The parameters C» and R; appear together as Colf; and
therefore represent one variable. Fixing C» at 2.62, the
Fletcher method [37] took less than 1 min of CDC 6400
computer time to reach the optimum with the value of -p
equal to 10 000. The main numerical difficulty with such
examples is that the Hessian matrix of the objective func-
tion becomes singular at those points where the first
derivative of the function with respect to the combined
variable is zero (note that this might happen at points
which are not optimal). There is an infinite number of
points where this can oceur. Since most of the algorithms
used for optimization assume that the Hessian matrix is
nonsingular, they will be very slow or they might even
stall. Another interesting problem of a redundant param-
eter is given by Markettos [62]. Following the ideas
developed in Section III and making an error analysis for
large p, a way to reduce the computational effort might
be found.
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Cascaded Network Optimization Program
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Abstract—A user-oriented computer program package is presented
that will analyze and optimize certain cascaded linear time-in-
variant electrical networks such as microwave filters and all-pass
networks. The program is organized in such a way that future addi-
tions or deletions of performance specifications, constraints, op-
timization methods, and circuit elements are readily implemented.
Presently, a variety of two-port lumped and distributed elements,
all-pass C-type sections and all-pass D-type sections can be treated
as fixed or variable between upper and lower bounds on the parame-
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ters. Adjoint network sensitivity formulas are incorporated. The
Fletcher-Powell or Fletcher optimization methods can be called to
optimize in the least pth sense of Bandler and Charalambous an
objective function incorporating simultaneously, at the user’s dis-
cretion, input reflection coefficient, insertion loss, group delay, and
the parameter constraints (if any). The program is particularly
flexible in the way in which response specifications are handled at
any number of, in general, overlapping frequency bands. The
package, which is written in Fortran IV, has been tested on a CDC
6400 digital computer.

I. INTRODUCTION

USER-ORIENTED computer program package is
presented that will analyze and optimize certain
cascaded linear time-invariant networks such as micro-
wave filters and all-pass networks in the frequency domain.



