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Absfracf—The main objective of this paper is to give a survey of
recent automatic optimization methods whish either have found or
should dnd useful application in the area of computer-aided network
design. Huang’s family of algorithms for unconstrained optimization

is reviewed. The Fletcher method and the Chsralambous family of

algorithms for unconstrained optimization, which abandon the “full

linear search,” are presented. Special emphasis is devoted to algo-

rithms by Bandler and Charalambous on least pth and minimax

optimization which can be readily programmed and used. Due to

work by Bandler and Charalsmbous, it is ahown how constrained

minimaz problems can be solved exactly as unconstrained minimax

problems by using a new approach to nonlinear progr amming. The

application of minirnax optimization on the design of lumped-dis-

tributed active dlters, problems for future investigation, and a

select list of references are also included.

I. INTRODUCTION

OPTIMIZATION techniques are of great interest to

engineers and applied mathematicians. The former

group has a practical or semipractical problem demanding

solution, while the latter ‘is challenged primarily by the

difficult task of obtaining theoretical conditons for opti-

malit y. Optimization techniques are needed in the fre-

quent case when the synthesis procedures of classical

theory are for some reason inapplicable, e.g., if the circuit

structure to be designed is too complicated to permit a

formal synthesis procedure. Over the past decade, there

has been a steady shift in applied optimization from the

status of an art to that of a scientific discipline. To a large

degree this shift is due to the development of high-speed

computers and of fast optimization algorithms. This

paper presents some recent automatic optimization meth-

ods which have found or should find useful application in

the area of computer-aided network design.

It will be apparent from the unified treatment of gradi-

ent algorithms for unconstrained optimization due to

Huang [1] and to a recent theorem by Dixon [2], why

there has not been much improvement in the area of un-

constrained optimization from 196S to 1970. Also, from

Property 1 of Fletcher [3], it will be clear why some

workers have reported success with the Fletcher–Powell

algorithm [4] without “full linear search.” The Charalam-

bous family of algorithms [5] for unconstrained optimiza-

tion, which is based on homogeneous models, is also

reviewed.

Manuscript received June 27, 1973; revised December 16, 1973.
This work was supported by the National Research Council of
Canada under Grant A7239 and through a Postdoctorate Fellow-
ship to the author.

The author was with the Department of Electrical Engineering,
MeMaster University, Hamilton, Ont., Canada. He is now with
the Department of Combinatorics and Opttilzation, University of
Waterloo, Waterloo, Ont., Canada.

Section III presents a unified review of least pth and

minimax optimization due to Bandler and Charalambous.

The difficulty of using least pth approximation in cases

when we have upper and lower response specification has

been completely eliminated by using the Bandler–Charal-

ambous generalized least pth objective function [6].

Furthermore, by using a simple scaling procedure, it is

possible to overcome the ill-conditioning of the objective
function for very large values of p and still have reasonably

well-conditioned objective functions [7]. Large values of

p are required so that the least pth optimal solution is very

close to the optimal minimax solution [8]–[1 1]. Using the

generalized least pth objective function, the necessary and

sufficient conditions for minimax optimization can be

derived [12]-[16].

Unlike the usual case in which the value of p has to

tend to infinity so as to be able to get results very close to

a minimax solution, Charalambous and Bandler very re-

cently proposed two new algorithms for rninimax optimiza-

tion in which any value of p greater than one can be used

to obtain the minimax optimum [17], [18]. Also it. will

be shown that if we are investigating whether a particular

structure will satisfy design specifications in the minimax

sense, any single suitable least pth optimization will reveal

this !

From the results of Section IV it will be clear how any,.
suitable algorithm for unconstrained optimization, non-

linear unconstrained minimax optimization, least pth

optimization, or nonlinear programming can be used to

solve both the rninimax optimization with constraints and

the nonlinear programming problem [17], [19]-[21].

This paper is intended to be an extension of the review

paper presented by Bandler for the 1969 Special Issue of the

IEEE TRANSACTIONS ON MICROWAVE THEORY AND

TECHNIQUES on computer-oriented microwave practices

[9], where he thoroughly covers one-dimensional opti-

mization methods and multidimensional direct-search

optimization methods. For this reason these methods are

not going to be considered in this paper (see also [22]).

Most of the material presented in this paper is based on

the author’s Ph.D. work [23].

IL UNCONSTRAINED OPTIMIZATION

A. l%adamental Concepts and Definitions

The unconstrained optimization problem is to calculate

the minimum value of the scalar valued function U where

u Q u(+) (1)

and
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4 A [A*” “ “+.]T. (2)

U is called the objectiue function, and the column vector ~

contains the k real independent variables. The term

“unconstrained” implies that the value of each variable

can be any real number: Maximizing a function is the

same as minimizing the negative of the function, so only

the minimization problem will be considered. ”

A point ~ is called a global minimum of U($) if

U(3) < u(+) (3)

for all 4. If the strict inequality holds for $ # ~, the

minimum is saidvto be unique. If (3) holds only in the

neighborhood of ~, then ~ is called a local minimum of U.

The first three terms of the multidimensional Taylor

series are given by

U(4 + At)

= U(+) + v~U(~)A~ + ~A~TG(~)A~ +... (4)

where

A+ A [AiplAdM. .” A4ti]T (5)

represents the incremental change in the parameters,

(6)

is the first partial derivative operator with respect to the

parameter vector 4, and’

G QV(VTU) (7)

is the matrix of second partial derivatives, the Hessian

matrix, which is symmetric if it exists.

Assuming the first and second partial derivatives exist,

a point J is a min~mum of U if

VU(J) = o (8)

and t~e Hessian matrix is positive semi definite at the

point ~. This can be seen from (4).

Considering the first thre~ term~ of the Taylor series

expansion about the point 4, and bearing in mind (8),
we have

U(+) A ~(~ – ij)TG($)(~ – ~) + U(~), (9)

Thus the f~nction behaves like a pure quadratic in the

vicinity of ~.

B. Multidimensional Gradient Strategies

In the rest of thk section, methods are described which

utilize only the information ~f the first partial derivatives

to determine the direction of search to the minimum of a

differentiable function.

The iterative scheme, in general, is to find

{+’,+’l”””,+k, ”””l

such that

+;+1 = $i + ~i

and

limg(f$i) = O (11)
;* w

where

~i = ~idi (12)

g = vu. (13)

d< is a k-dimensional vector which denotes the direction of

search and ai a scalar which takes the value of h minimizing

U (4i + kdi) along the dhection di, resulting in

(gi+l) T& = (). (14)

Considering the first two terms of the Taylor series

expansion about the point ~i, we have

U(($~ + W) = U(&) + k(g~)”d~. (15)

By definition, the direction hdi is a “downhill direction” if

X(–gi)Tdi >0. (16)

In other words, the sign of m is the same as that of
( –9i)Tdi.

C. Huang’s Generalized Algorithm [1]

If@ = – (Gi) -’gi, we have the Newton algorithm, and

if d~ = —gi, we have the steepest descent algorithm.

Newton’s method has an excellent rate of convergence, if

it converges, but the method may not converge at all, and

it requires the second derivatives of the function to be

min~mized. On the other hand, the steepest” descent

method is superior to Newton’s method in stability and

requires only the first derivatives of the function, but

convergence is often’ very slow. Methods which combine

the good characteristics of these two methods and use

only first derivatives have been developed and are still

being developed. Common features of these algorithms

include the iterative approximation of the Hessian matrix

and the use of conjugacy properties to determine direc-

tions of search. ‘

In 1970 Huang derived a general algorithm which is

based on the two ideas mentioned previously, and has the

property that it will terminate in at most k iterations on

quadratic functions. Most of the existing conjugate-

gradieut algorithms and variable-metric algorithms can be

obtained as particular cases.

Huang’s generalized algorithm is based on the quadratic

model ‘

u(+) = ;(+ – J)”G(+ – J) + U(J). (17)

The reason for a quadratic model is that it is the simplest

differentiable function that can have a well-defined

minimum.

From (17)

g(~) = G(+ – $)

Vi = Ghi
= a,Gd% (18)

yi ~ gi+l _ gi. (19)

(10) where
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From (18) and (14), weget

(20)

and from (18) and (20),

z–l

(gZ) ~df = Z ai (d) ‘Gd~, j=o,l,. . . ,1 – 2. (21)
+* I

A set of nonzero vectors {dO,dl,. . . ,dk–1] are G conjugate

if

(d~) TGdj = 0, i # j,i,j = 0,1, . . ..lc– 1. (22)

If G is positive definite, the k vectors {dO,dl,. -. ,dk–l },

which are G conjugate, are also linearly independent.
Therefore, from (14), (21), and (22),

(gz)T& = (), j= 0,1,...,1– 1. (23)

Let 1 = k, then

(g’) ‘d’ = O, j= 0,1,. ..,k– 1. (24)

Since the elements of {do,d’,. . . ,d~-1 ] are linearly inde-

pendent,

gk = (). (25)

Therefore the minimum of a positive definite quadratic

function is attained in at most k iterations.

Let

di = _ (~i) T9i (26)

where W is a k x k matrix. From (22),

(gi) Z’HJy~ = (), j=(),l,. ..,l-. l (27)

and, from (23),
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Also, from (12), (18), (22), and (29), we have

(fi’)Ty~ = O and (y’) Ti5Py~= O, j = 0,1,0 ..,i– 1.

(35)

Therefore,

CIi = Cli8i + Czi(Hi)Tyi

c2.i = Kl~& + m(w) Tyi (36)

where Cli, CJi, K,i, and K,i are scalars. Substituting for

Cli and c2i in (33), we obtain Huang’s generalized algorithm

[
Hi+l = H+ p ‘i(c1i8i+c2i(Hi)Ty’)T

(Clw + c,’(m) Tyi)Ty’

Hiyi(Klitii + K#(H~)Tyi)T— 1(K,itii + K,i(Hi) ‘yi)Tyi -
(37)

When i = k,

H~Gd~ = ~d~, j = 0,1, . . ..k–l. (38)

Since the elements of {d“,dl,. . . ,dk-l ] are linearly inde-

pendent,

Hk = ~G–1. (39)

Therefore, Hk is a symmetric matrix. If p is positive, Hk is

positive definite. If p is zero, the matrix Hk is the null

matrix, and if p is negative, the matrix Hk is negative

definite.

Special Case 1: If we let p = 1, Cli = 1, Czi = O,

Kli = O, and Kji = 1, then

w+= H+= “’(’’)TH’. (4))
(&)Ty’ – (Yi)THiyi

(g~)T& = (), j=o,l,. ..,l–l. (28) This is the Fletcher and Powell [4] updating formula.

From (27) and (28),

EPyj = p&, ,j=o,l,. ..,i

where p is an arbitrary constant.

Let

Hi+l . Hi + AHi

then, from (29) and (30),

AHiyJ = 0, .j=o,l,. ..,i

AH’yi = pti~ — Hyi.

To satisfy (32), one can choose

1 (29)

(30)

1 (31)

(32)

tii(cli)T
AW=P

wy~(c2qT

(C,i) Tyi – (c/)Ty’
(33)

where Cli and Czi are arbitrary ii-dimensional column

vectors satisfying (cli) ‘yi # O and (C29 ‘y; # O, respec-

tively. Also, Am satisfies condition (31) if

(CIi)Ty~ = O and (c,’)~y~ = (), j=o,l,. ..,l–l.

(34)

Thk updating formula has the property that if Ho is a

positive definite symmetric matrix, then W is also a sym-

metric positive definite matrix, i.e., a, > 0.

Special Case 2: If we let

c2~ _(’i)TYi

p = l’~i = (~i)TYi+ (Yi)THiyi’ ‘li = Land K2i = O

then

(+~+(yi)T~yi si(~i)T)(&)Tyi (tY)Tyi” ’41)
This updating formula was discovered by Fletcher [3],

Broyden [24], and Goldfarb [25] and has the same proper-

ties as that of Fletcher and Powell.

Dixon [2] proved the following results for a general

nonlinear function:

(H)Tgi = /3,qi (42)

where D, is a scalar defined by
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Pi= -(~i-IKi-’- ~)’-’)

(vi-l) z’(~i-1) Tgi-l

“ (~,i-lfji-l + jy,i-l(~i-1) Z’yi-l) Z’yi-l (43)

and qi is a k-dimensional vector defined by

‘i=(EHw’HO)T”

From (26) and (42), it can be seen that

d~ = –fl,q~. (45)

Equations (44) and (45) show that di depends only on the

initial matrix Ho and the value of p, and is independent of

the parameters Cli, Czi, Kli, and Kzi. Therefore, if a

sequence of points 4; is generated using a group of formulas

belonging to Huang’s family on the same general non-

quadratic function, then the necessary and sufficient con-

ditions for all the sequences to be identical is that all

formulas in the group possess the same value of p and the

same value of the matrix Ho.

Since most of the algorithms introduced by most of the

authors are members of Huang’s family with p = 1, they

should all give identical sequences of points if “full linear

search” is used. Due to the fact that the minimum in a

one-dimensional search cannot be found exactly, the

sequence of points generated might not be exactly the

same. Bearing all of the above in mind, it is clear why

there was little improvement in the area of unconstrained

optimization from 1963, when the Fletcher–Powell al-

gorithm was published, until 1970, when Fletcher came

up with the brilliant idea of avoiding the “full linear

search” subproblem.

D. Fletcher Algorithm [3]

The main disadvantage of Huang’s generalized algo-

rithm is the need to solve the subproblem of finding ai at

each iteration (the full linear search). The importance of

the full linear search is that it furnishes a property which

enables finite termination to be proved for quadratic

functions.

Fletcher replaced the property of quadratic termination

by a property which requires that, for a quadratic func-

tion with G strictly positive definite, the eigenvalues of

H must tend monotonically to those of G–l in certain

sense (he calls this Property 1). He has further shown that

(40) and (41) and any convex combination of them possess

Property 1. Because the Fletcher and Powell updating

formula satisfies Property 1 of Fletcher, it is clear why

workers had success in using this algorithm without full

linear search.

Use of (40) alone might cause H to become singular.

For this reason a choice is made between the two updating

formulas by the following test: if

( a’)~y’ < (y ’)~wy’ (46)

then formula (40) is used; otherwise, formula (41) is used.

In the Fletcher method, the correction 6 is determined by

ti = – kHgj where the value of X is chosen to satisfy the

following inequality:

(47)

where p is a preassigned small quantity. Note that the

expression between the inequality signs tends to one as k

tends to zero, and that if U(t) is bounded below, this

expression tends to zero or to become negative as A tends

to infinity. Therefore, a suitable value of x exists. Fletcher

is confident that the choice of h = 1 is not too small.

Therefore, he tries the estimates X = 10-~ for j = 0,1,...,

and he accepts the first estimate that satisfies the left-hand

inequality of expression (47). In practice, he finds that

on most iterations the value of k = 1 is satisfactory.

A simple interpretation of which formula should be used

is given in the following equation:

Hf = HfP + VVT (48)

where

(8 Hy
v = (yTH7) 1/2 WY –

–)
(49)

yTHy

and Hf, HfP denote the Fletcher, and Fletcher and Powell

updating formulas, respectively. Let us suppose that the

function is quadratic; then replacing 6 by G–ly, the

inequality (46) becomes yTG–ly < yTHT. Thk shows that

H is “larger” than G–l, and therefore the “smaller” for-

mula HfP is used. If yTG–ly > yTHT, then His “smaller”

than G–l, and therefore the “larger” formula Hf is used.

If equality holds, then no indication is given which for-

mula to use. In this case, Hf is used to avoid possible

singularity in H.

E. Charalambous Family of Algorithms [5]

Jacobson and Oksman [26] derived an algorithm based

on the homogeneous model

u(+) = $(+ – J)Tg(+) + U(J) (50)

where 7 is the degree of homogeneity. Note that if y = 2

and the Hessian matrix is constant, we have the quadratic

model discussed previously.

Charalambous [5] presented a family of algorithms

based on (50). From (50),

f/Ta = v (51)

where

‘v Q +~g(+)

u’ A [9’(+) u(+) – 11

a’ & [+yw]

w = ~u(~).



CHARALAMBOUS : REVIEW OF OPTIMIZATION 293

Note that a contains the optimum parameter vector. At

some point *i,

(g~)~*~ = Vi. (52)

At any step we should satisfy (52) for all steps so far

made. Therefore,

yiai = @ (53)

where

[1
(!J’) T

.

.

.
(ui)T -[1

2)1
.

v~~..

.

vi

Using the ideas of Penrose [27], Charalambous derived

a very general recursive formula for ai. A special case of

the general formula is the following:

pi+ = pi
Piai+l(yi+l) Tpi

—

(!/’+’) Tpiai+l y A’+1
(55)

where A; is a (k + 2) x (k + 2) matrix, and ai is a

k + 2 veetor satisfying

‘n, = 1,. ..,;

A~an+l = (), (56)

j = 1,. ..,~.

PO and aO can have any values, but for simplicity the

value PO = I is used.

Let Ai = c;(di) T where Gi and d~ are ~ + 2 vectors. It

is natural to choose di+l = a~+l = e~+l, where ei+l is a

unit vector of the same dimension as ai+l having unity at

the (i + 1) th element. Then (56) is satisfied, and it is

independent of Ci. Therefore, Ci can have anv value. Eaua-

tions (.54) and (55) now become

P’ei+’ (vi+, – (u’+’) ~ai)
&+l = & +

(Ui+l) Tpiei+l

pi+l = pi
Piei+l (Ui+l) Tpi

—
(Vi+l) Tpiei+l

+ ~i+l(e~+l) To

Substituting

Piei+l
~i+l by ~

(Vi+l) Tpiei+l

where A is any scalar quantity, we have

PHI = pi _ “ei+’( (Y’+l) ‘pi – A (=,+1) T)

(yi+l) Tp~ei+l “

.

(57)

(58)

(59)

If X = 1, then we have the Jacobson–Oksman algorithm

[26].

Some important properties of Charalambous family of

algorithms are 1) they do not require finding minima

along one-dimensional searches; 2) they converge in

k + 2 iterations on homogeneous functions; 3) they do

not require the Hessian matrix to be nonsingular; and

4) if cxli+l and az;+l are two updating formulas, then

~ali+l + (1 – p) a,;+l will be an updating formula where

p can have any finite value.

l’. Termination Critevia

Algorithms terminate after one or more of the following

criteria are satisfied: 1) if the change in the objective

function becomes less than el, a small positive number;

2) if the absolute values of the elements of the increment

vector become less than Cz,a small positive number; 3) if

the norm of the gradient vector becomes less than et,

another small positive number. As a safeguard the algo-

rithm should go through k iterations after the terminating

criterion is satisfied, before the program terminates. Even

if all of the above criteria are satisfied, it will be safer if

we make a small perturbation from a point which satisfies

the previous criterion and continue the iteration from the

perturbed point. If the point ultimately reached from the

perturbed point is substantially different from that ob-

tained originally, then it is wise to treat any results with

suspicion.

Some other interesting papers on unconstrained opti-

mization are given in [28]–[35].

III. NONLINEAR LEAST PTH AND MINIMAX OPTIMIZATION

Consider a system of m real nonlinear functions

fi(+), icI (60)

where

lQ{l,2,...,m}.

Let

M~(4) Qmaxf, (+). (61)
id

The problem of .minimax optimization of (60) consists of

finding a point r$ such that

~f(i) < ~f(~)

for all points + at least in the neighborhood of ~.

Various algorithms have been proposed for solving the

above problem. Some of the most relevant make use of the

generalized least pth objective function of Bandler and

Charalambous [6], [7].

A. Bandler–Charalambous Generalized Least pth Objectives

[6], [7]

If fi (+) >0 for i <1, then it is very well known that

Mf(@) = lim VP+(4) (62)
p+m

where

UP+(+) = (z (fib)’)’/’. (63)
id
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Bandler and Charalambous considered the most general

case, in which some of the j i for i & I are nonnegative or

all of the ~; for i c 1 are negative. As we shall see later,

this general case occurs in many engineering problems,

such as in filter design problems. In the case where at least

one of the f i is nonnegative,

Mf(~) = lim UP+(+) (64)
p+m

where in this case,

~,+(+) = ( x (.f$(+))’)’” (65)
i6J(@)

and

In other words, in forming U,+(~), we consider only the

functions which are nonnegative.

In the case where ~~(~) <0 for all i { 1,

IVIf(*) = Iim UP-(4) (67)
P+w

where

u.-(+) = –(~ (– fi(+))-P)–l/P@ (68)
ieI

In other words, in forming UP– (~), all the functions have

to be considered.

This shows that by minimizing the objective functions

given by (65) and (68) with very large values of p, we

should obtain results very close to the minimax optimum.

Without any modification this will apply only in theory,

due to ill-conditioning resulting from the numerical eval-

uation of [* .f, ( +) ]+~ for very large values of p. Bandler

and Charalambous [7] were able not only to alleviate this

ill-conditioning problem, but also to combine the two

objective functions given by (65) and (68) into the one

objective function, namely,

U,(+) = Mf(+) (ie~+, (*)”)’”, for Mf(+) # O

= o, for lff(~) = O

(69)

where

M,(($)

1

l<p <m, for Mf >0

‘Q/ M,(~)l”p ~<p<m,
for Mf <0 (70)

1
J(+), if Mf > 0

K(+) Q

I, if Mf <0. (71)

The gradient vector of the combined objective function
is given by

‘up(’)‘(iE,)(*Y)’’)-’
fi(+) ‘-’ Vfi(+),

. xk+)) for il~f(~) # O. (72)
kK (@)

From (69) and (72) it can be seen that if ~i(~) for

i c I are continuous with continuous first partial deriva-

tives, then, under the stated conditions, the objective

function is continuous everywhere with continuous first

partial derivatives (except possibly when Mf (~) = O,

and two or more maxima are equal). Therefore, very

efficient gradient optimization algorithms can be used to

optimize (69). To overcome the difficulty which arises

when M,(~) = O and two or more maxima are equal (and

due to other reasons which will become apparent later),

Bandler and Charalambous minimize M~’ ( ~), where

M/($) Qmax.fi’($) = max (.fi($) – ~) (73)
id id

where [ is an artificial margin which is kept constant

through the optimization. If the algorithm gets stuck, we

increase the value of $ by a small amount and restart the

optimization process. It is important to note that the

parameter ~ does not awffect the location of the minimax

optimum. If .$= Mf (~) (llJf’ ( ~) = O) then any finite

value of p will yield the minimax solution!
Thk approach has been applied in the optimization of

microwave networks [71, [19], [36], digital filters [37],

and modeling problems [38], with values of p ranging

between 1000 to 1000000.

B. Conditions for Optimality [12], [13]

Of great practical importance to engineers and applied

mathematicians is the optimalit y of their approximation.

Bandler and Charalambous [12], [13] derived the neces-

sary and sufficient conditions for optimality in generalized

nonlinear least pth optimization problems for p + m. In

the limit, the conditions for a minimax optimization are

obtained [14]–[16].

In order for a point ~ to be a minimax optimum, it is

necessary [and in the case of the convexity of .f, ( ~) for

i c I, also sufficient], that

~ ‘UiVfi(J) = 0, Zli~O (74)
itJ

~Ui= 1 (75)
.ieJ

where

.l Q {i ]ji(~) = Mj(~), ic 1}. (76)

The multipliers ~i for i < ~ are given by

( [.T”JiP) /~f(LJ 1’~i = Iim
p-cc ~ [.fi(+P)/~f(&)l’ )

(77)

ieJ

Jwhere ~ denotes the opt$mun parameter vector for par-

ticular values of p (~~ = $) and q as given by (70).

C. Charalambous-Bandler Algorithms [17], [18]

Based on the above ideas, Charalambous and Bandler

were able to construct two new algorithms for minimax

optimization [17], [18]. Unlike their original approach

in which a very large value of p is required with the new

algorithms, any finite value of p in the range 1 < p < ~
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will produce extremely accurate minimax solutions. The

computational procedure for both algorithms is as follows:

1) Assume the starting point ~“ is given; set El =

min [O,Mf (~”) + e], r = 1. e is a small positive number.

2) Minimize with respect to ~ the function

for M($,~) # O (78)

= o, for M(~,~) = O

where

M(~,p) Qmax (.f~(~) – P) = kf~(~) – i“ (79)
$er

and

(J(+,t”) = {~lf*(4) -r> 0, ~{ ~1,

K~ J q=p, ifM>O

1 I, q = –p, if M<O. (80)

3) Let & denote the optimum parameter vec~or at the

rth step. If Algorithm 1, go to 4; otherwise, if M ( W,Y) <0,.
go to 4; or else set

~+1 = g + x’M(i’,P)

= (1 – A’)p + UMf(&) (81)

where

O<x”<l (82)

and go to 5.

4) Set

p+l = Mf(J’) + c. (83)

5) Convergence criterion: If I P+l – P \ < q stop; or

else set r = r + 1 and go to 2. q is a small prescribed ‘posi-

tive number.

Obviously, the larger the value of p is, the fewer will

be the number of sequential optimizations required to

reach a desired accuracy, but this does not mean that the

number of function evaluations will be fewer. Algo~ithm 2

is different from Algorithm 1 as long as M,($) >0,

otherwise it is the same. The main difference is that @

Algorithm 1 we try to push the maximum away from the

level ~ at the rth iteration,Vwhile in Algorithm 2 we try

to predict the value of Mf ( 4) by increasing ~ from zero

appropriately. Due to this fact, q = —p for r = 2,3,”; o,

for Algorithm 1, and for A~goritbm 2, q = p if ~ < Mf (4),

and q = —p if ~ > Mf ( 4). The reason for inclusion of e

is to avoid having M = O, because in this case, when two

or more of the j, for i < I are equal the objective func-

tion’s first derivatives are discontinuous.

It. can be shownw [17] th~t for both algorithms

I 71(r&,r) \ ~0, Mf(*) -+ Mf(4), as r+ ~.

D. Error Function ~7]

Define real error functions related to “upper” and

“lower” specifications, respectively, as [7]

e.(414) A w.(*) (F(4)*) – ~.($)) (84)

ez(c$,t) A wz(*) (F(4,*) – ~Z(l)) (85)

where

F(4,v) the approximating function (actual response);

S’.(*) an upper specified function (desired response

bound) ;

~l(t) a lower specified function (desired response

bound);

%(*) an upper positive weighting function;

W1(*) a lower positive weighting function.

In filter design problems, for example, F (4,*) will be

the response, 4 may represent the network parameters, $

could be frequency, flu(~) would refer to the passband

specification: and S1(~) to the stopband specification. If

JS.(+) = Si(+), w.(+) = WZ(IJ), then e(4,+) = e.(4,#) =

ei ( 4,*), which is the conventional case (single specified

function).

In practice, we will evaluate all the functions at a finite

discrete set of values of ~ taken from one or more closed

intervals. Therefore, we will let, eu, ( 4) Q eu( 4,+,) for

i ( Iu, and cl,($) Q el($,~,) for i E lz, where

Iu Q {1,2,. ..jnu}

Ii Q {n. + l,nU + 2,0.0,nU + nl) (86)

where nu and nt are the number of sample points over the

upper specification and lower specification, respectively.

Let

and

If

(87)

(88)

[

>0, the specification is violated

J’ff(4) = o, the specification is just met

<o, the specification is satisfied.

The objective function (69) has a very important prop-

ert y. If the objective function corresponding to the opti-

mum solution with any finite value of p greater than one

is positive (specification violated), then, at the optimum

point for all other values of p (even with p = Q, i.e.,

rninimax), it will be positive. Similarly, if it is negative

(specification satisfied), it will be negative for any other

value of p. Thus, if we want to investigate whether a par-

ticular structure will satisfy design specifications in the

minimax sense, any single least pth optimization will reveal

this (even p = 2) !

Other interesting papers for minimax optimization are:

Osborne and Watson [39], Bandler and Macdonald [40],

Bandler et al. [41], Lasdon and Waren [42], and Klessig

and Polak [43].
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IV. NONLINEAR PROGRAMMING

A. The iVonlincar Programming Problem

The nonlinear programming problem can be stated as

minimize U(+) (89)

subject to

g;(+) 20, i = 1,2,. ..,m (90)

where U is the generally nonlinear objective function of k

parameters & and g,(4) ,g~(~),.. ” ,g~(~) are, in general,
nonlinear functions of the parameters. We will assume that

all the functions are continuous with continuous partial

derivatives, and that the inequality constraints gi(~) >0,
i = 1,2,. ..,m are such that a Kuhr-Tucker solution

exists (see Lasdon [44] and Zangwill [45]).

Before the results of Section III were available, the

nonlinear minimax optimization problems were solved by

transforming them into nonlinear programs [46] and

solved by well-established methods such as the barrier-

function method of Fiacco and McCormick [47], [48].

Other methods of solving the resulting nonlinear programs

include the repeated application of linear progrkmning to

suitably linearized versions of the nonlinear problem [39].

Very recently, Bandler and Charalambous transformed the

nonlinear programming problem into an equivalent un-

constrained minimax problem [21].

B. Bandler-Charalambous Algorithm [21]

Consider the problem of minimizing the unconstrained

function

V(&a) = max [U(4), U(4) – aigi(+)l (91)
l<i<~

where

Q! ~ [alaz. . . am]T (92)

and

ffi > 0, i = 1,2,. ..,m. (93)

Under the stated assumptions, the following can be

proved [21]. (

If the Kuhn–Tucker necessary conditions for optimali~y

of the nonlinear programming problem are satisfied at ~,

then positive al,az, . . . ,a~ can be found satisfying

(94)

such that ~ satisfies the necessary conditions for optimality

of V(&a) with respect to ~, where U1,U-A”-- ,W are the
Kuhn–Tucker multipliers.

It is well known that Ul,ti,.. . ,u~ are specific nonnega-

tive numbers, so that sufficiently large positive al,az,. . . ,a~

must be chosen to satisfy (94). Since Ul,w,. . . ,u~ are not

known in advance, one may not be able to forecast their

values. If insufficiently large values of al,az,. . . ,a~ are

chosen although a valid minimum of V ( ~,cx) may exist,

the constraints may not be satisfied at that point. A

possible implementation is to use the results of Section

III.

Let

fi(+) A u(+) – w9i(+),

and

fo(+) = u(+)

then the problem is to minimize

maxti(~)
id

~=lz , ,-.. m’m (95)

(96)

(97)

where I Q {O,1,. -. ,m). Therefore, any of the three

methods described in Section III can be used to solve the

minimax problem for selected values of m If the optimum

parameter vector obtained is such that at least one of the

constraints is violated, the elements of a are increased,

and the optimization procedure repeated. In practice, a

tolerance for tiolated constraints should be specified.

There is no need to distinguish between feasible and

nonfeasible regions. Due to this fact, equality constraints

can be readily handled by transforming each one of them

into two inequality constraints (e.g., if h(~) = O, we can

transform it into the following two inequalities: h(~) >0,

–h(c$) > O).

C. Constrained Minirnax Optimization I [17]

Let us suppose that we want to minimize Mf (~) given

by (61) subject to the constraints

gi(+) 20, i=m+l ,...,m+n (98)

It is well known that the nonlinear minimax optimiza-

tion can be transformed into the no&near programming

problem

minimize z (a new independent parameter) (99)

subject to

z – j;(+) 20, i = l,z,. ..,m (loo)

and

gi(t) 20, i=m+l,. ..,m+n. (101)

As we have already seen this nonlinear programniing

problem can be transformed into an equivalent uncon-

strained minimax problem, in which case the algorithm

presented in Section III can be used.

D. Con.strained Minimax Optimization II

Let us suppose that we have the same problem as in the

previous subsection. Consider the minimization of the

following unconstrained minimax function:

W(~,zo) = max ji(+) (102)
1<i<m+.

where

$,(+) A –Wigi(+), i=m+l,. ..,m+n (103)

w Q [W*1, . . “ ,W??+.] (104)

Wi > 0, i=m+l,. ..,m+n. (105)
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lf at the Constrained optimum Mj(~) >0 and at le~st

one of the constraints is active, the optimum point @

whic$ the met$od will give will be nonfeasible, but

MJ(~w) < Mf(~). If M~ (~) <0, then the optimum

which the method will give will be feasible. If reasonably

large values of the components of the vector w are used,

the optimum point of this method will be quite close to

true optimum. The resulting solution would be meaningful

in the engineering sense since tradeoffs between response

specifications and design constraints will be obtained.

Application of these two methods to microwave engi-

neering problems can be found in [19] and [20]. Other

interesting papers on nonlinear programming are given in

[28], [30], and [47~[58].

V. EXAMPLE

E. Lwmped-Distrdruted Active Filter

A third-order lumped-distributed active low-pass filter,

in the form of the network shown in Fig. 1, is considered

as an example. The problem is to be solved for minimax

results in 3 ways:

1)

2)

3)

an attenuation and ripple in the passband, [0,0.7]

rad/s, of less than 1 dB, while the attenuation in the

stopband, [1.415, ~ ] rad/s, is at least 30 dB (second

amplifier not included);

keeping the attenuation and the ripple in the pass-

band at 1 dB and obtaining the best stopband

response;

minimizing the attenuation and ripple in the pass-

band subject to at least 30-dB attenuation in the

stopband.

Problem 1 has been previously studied from a computer-

aided design point of view, by Mokari-Bolhassan and

Trick [59], and Problem 2 by Newcomb [60] by using

synthesis methods. For both problems their results were

not optimum in the minimax sense.

The node equations for the circuit are

r y22 + iocl – (Y22 + V12)
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RO
V2

Fig. 1. Third-order lumped-distributed active lowpass filter.

{1.415,1 .5,1.617181920212223242526279.9.J.J.7.7 .9.7 .?. ?.9. 9

2.8,2.9,3.0}.

‘For all three problems

I
w.i(Fi —r), i= 1,2, -..,9

e.i =

wu~(F~ + 30), i = 10,11 ,0.:,26 (108)

ezi = wzi(F’i + 1), i = 27,28, ~..,35 (109)

where F is the gain in decibels, and r a small number

whose significance will become apparent later. From

(106), it can be seen that C, and RI appear together as

G“~Rl and therefore represent one variable. Hence CZ was

kept fixed at the value 2.62 as given by Mokari-Bolhassan

and Trick.

For Problem 1, all the weighting factors were set equal

to 1, r = O, and

4 = [A R C R, Rl Cl]”.

For Problem 2, the weighting over the passband was

set equal to 1, and over the stopband equal to 10–4 and

r = 10–3. The reason for the small weight in the stopband

is to give more emphasis to the “deviation” in the stop-

band. The small value of r is used because at zero fre-

quency the function F is equal to zero and by using the

approach described, would lead to M = O if r = O. To

avoid the possibility of the error at zero frequency from

becoming active, it is necessary that the following in-

equality holds at the optimum point:

‘r > I M(&) 1. (110)

( )– !/22+Y12+4-
RO

yll + Y22 + Y12 + !/21 + ~
RO

o

A
o’ ; + jdc,

R,

v,”

V2

v,

——

– y12vs -

(Yll + YE) Vs

o

(106)

where YII, Y12, Y21, and YZ2 are the y parameters of the For Problem 3 the weighting over the upper specification

uniform RC dktributed line was set equal to 1, over the lower specification to 104 and

r = 10–3. The same comments as those in Problem 2 hold.

Vo = + V3. (107) l?or Problems 2 and 3,

It was decided to use 9 sample points in the passband, in
+ = [A C R, C,]T

radians per second: with RO = 1 and R z 17.786.

{0,0.1,0.2,0.3,0.4,0 .5,0.6,0.65,0.7}
Optimization using the Fletcher method [3], in accord-

ance with the ideas discussed in Section III, with p = 2,

and 17 sample points in the stopband 10, 100, 1000, 10000 (p is increased after each optimum is
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TABLE I
OPTIMIZATION OF THE CIRCUIT SHOWN IN FIG. 1

Parameters A R c R, R, c’, c,

Starting point (MBT’) 1.142 17.786 0.427 1.0 1.0 0.067 2.62

Optimum point

Problem 1 1.00339 21.75063 0.47719 0.61713 0.95378 0.04525 kept fixed

Problem 2 1.25659 kept fixed 0.39304 kept fixed 1.01968 0.08975 kept fixed

Problem 3 1.11832 kept tied 0.39287 kept fied 0.68946 0.06639 kept fixed

‘ MokarLBolhassan and Trick (1971).

reached) gave the results shown in Table I. In all the

cases, the following parameter transformation was used to

keep the parameters positive:

where @,’ is used as a variable insbead of ~,. The adjoint

network approach was used for the calculation of the

gradients of F with respect to ~’ [61], and can be found

in [23].

The starting point in all three problems was the one

which Mokari-Bolhassan and, Trick (MBT on the Figs.

2–4) called their optimum. The starting and the optimum

responses are depicted in Figs. 24, from which it can be

seen that the results of Mokari-Bolhassan and Trick are

not optimum in the minimax sense. It can be easily

checked that (110) is satisfied for Problems 2 and 3.

It is interesting to note that Problems 2 and 3 fail in the

framework of nonlinear r&imax approximation with non-

linear constraints. That is, Problem 2 can be phrased as

‘(minimize the maximum of 17 nonlinear functiofis subject

to 18 nonlinear constraints and 4 linear constraints” and

Problem 3 as “minimize the maximum of 9 nonlinear func-

tions subject to 26 nonlinear constraints and 4 linear con-

straints,” which obviously is not so easy.

Problems 2 and 3 have also been solved by creating

violated specifications. For Problem 2, we set S% = O dB,

Sl = 1 dB over the passband, S. < – 35.3 dB over the

stopband, and use a reasonably large weighting factor

—
1,415

/
-30

~ !377725 rad /ssc 3

optimized

-31 MBT–ini+l.al

dB 2,934x 10-2

-52L /
r

dS

-1 /

2.934; 10-2

P//////M/////J/////////////////J/////////.///4

‘1’”’”‘i+

Fig. 3. Optimized gain of the circuit of Fig. 1 subject to the con-
straints imposed for Problem 2.

I 4i5 rad/sec
2 2.5 3

-30 ///////l/////u/2%?%X/////%9%%X///H///h

r
dS

II /

.aptimized

-31

-32

-33

H

rad~sec

-1 ,

MBT-initial

Fig. 4. Optimized gain of the circuit of Fig, 1 subject to the con-
straints imposed for Problem 3.

over the passbancl. For Problem 3, we set S. = St = O dB

over the passband, S. = —30 dB over the stopband, and

we use ~ reasonably large weighting factor over the upper

specification. For both problems the zero frequency can

be neglected. The results obtained were in very good

agreement with those shown in Table I.

VI. CONCLUSIONS

When preparing this paper, the author had in mind the

Fig. 2. Optimized gain of the circuit of Fig. 1 subject to the con- question of future investigation. Four separate subjects

striints imposed for Problem 1. are recommended for future research.
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Extrapolation techniques can be “applied for both

algorithms presented in Section III on ~ and P separately

or simultaneously, which can accelerate the convergence.

This will also have an impact on the new method of non-

linear programming. Fiacco and McCormick [53], for

example, have applied extrapolation techniques in their

method of solting the nonlinear programming problem.

One of the main disadvantages of the original Fiacco-

McCormick approach to nonlinear programming is that

the function is undefined outside the feasible region. What

this author proposes is a “negative to positive barrier

method” through the constraint boundary. In other

words, the function is to be finite and positive outside the

feasible region and negative inside the feasible region, if

the starting point is feasible.

An automated method is needed to recognize a redun-

dancy in the variables of a design problem. A redundant

variable can cause ill-conditioning. An excellent example
is the lumped-distributed active filter studied in Section

V. The parameters Cz and RI appear together as C2R1 and

therefore represent one variable. Fixkg Cs at 2.62, the

Fletcher method [3] took less than 1 min of CDC 6400

computer time to reach the optimum with the value of p

equal to 10000. The main numerical difficulty with such

examples is that the Hessian matrix of the objective func-

tion becomes singular at those points where the first

derivative of the function with respect to the combined

variable is zero (note that this might happen at points

which are not optimal). There is an infinite number of

points where this can occur. Since most of the algorithms

used for optimization assume that the Hessian matrix is

nonsingular, they will be very slow or they might even

stall. Another interesting problem of a redundant param-

eter is given by Markettos [62]. Following the ideas

developed in Section III and making an error analysis for

large p, a way to reduce the computational effort might

be found.

ACKNOWLEDGMENT

The author wishes to thank Dr. J. W. Bandler, Guest

Editor of this special issue on computer-oriented micro-

wave practices, for the invitation to write this review

paper. Dr. Bandler, furthermore, declined the offer of

coauthorship. He also wishes to thank Dr. R. E. Seviora

for useful discussions; B. L. Bardakjian, J. H. K. Chen,

V. K. Jha, N. D. Markettos, P. C. Liu, J. R. Popovi6, and

T. V. Srinivasan who implemented some of the ideas pre-

sented in this paper; W. Kinsner for discussions; and Mrs.

Joan Selwood for careful typing.

REFERENCES

[1] H. Y. Huang, “Unified approach to quadratically convergent
algorithms for function minimization,” J. Optirnia !f%eory
fippl., vol. $ pp. 405423, 1970.

[2] L. C. W. DIxon,. “Variable metric algorithms: Necessary and
sufficient conditions for identical behavior of nonquadratic
functions,” J. Optimiz. Theory AppL, vol. 10, pp. 34-4J 1972.

[31 R. Fletcher. ‘(A new amroaeh to variable metric al~orlthms.”

299

[41 R. Fletcher and M. J. D. Powell. “A ra~idlv eonvement descent. . . . ._ .

[5]

[6]

[7]

[8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]’

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

[33]

method for minimization,” Comput. J., vol. 6, pp. 163-168,
1963.
C. Charalambous, “Unconstrained optimization based on
homogeneous models,” Math. Progra., vol. 5, pp. 189–198, 1973.

John W. Bandler and C. Charalambous, “Theory of generalized
least pth approximation,” IEEE !f%ans. Circuit Theory, vol.
CT-19, pp. 287–289, May 1972.

“Practical least pth optimization of networks, ” IEEE
Tra&. Microwave Theoru Tech. (1979 S%mvosium Issue). vol.
MTT-20, pp. 834-840, ~ec. 1972: “ ‘

.,

G. C. Temes and D. Y. F. Zai, “Least pth approximation,”
~~6~E Trans. Circuit Theory, vol. CT-16, pp. 23.5-237, May

John” W. Bandler, “Optimization methods for computer-aided
design,” IEEE Trans. Microwave Theory Tech., vol. MTT-17,
pp. ~33–t552, Aug. 1969.
G. C. Temes. C(O~timization methods in circuit design,” in
Computer Ori&tted kircuit Design, 1?. F. KUO and W. G. fi~gnu-
son, Jr., Ed. llnglewood Cliffs, N. J.: Prentice-Hall, 1969.
R. Seviora, M. Sablatash, and J. W. Bandler, “Least pth and
minimax objectives for automated network design,” Electron.
Lett., vol. 6, pp. 14-1.5, 1970.
J. W. Bandler and C. Charalambous, “Conditions for minimax
approximation obtained from the 1P norm,” IEEE Trans.
Automat. Contr., vol. AC-17, pp. 257–2.58, April 1972.

“On conditions for optimality in least pth approximation
~~~~’ p - m ,“ J. Optimiz. Theory Appl., vol. 11, pp. 556-566,
Iv(a.

John W. Bandler, “Conditions for a minimax optimum,” IEEE
Trans. Circuit Theory, vol. CT-18, PP. 476-479, JUIY 1971.
V. F. I)em’yanov, “Sufficient conditions for minimax prob-
lems,” Zh. Vychist. Mat. Fiz., vol. ~0, pp. 1107–1115, 1970.
J. Medanic, “Solution of the convex minimax problem by the
Newton-Ra~hson method.” in Proc. 8th A llerton Conf. Circuit
and System k’heor~ (Urbana, Ill., Oct. 1970), pp. 1>22.
C. Charalambous and J. W. Bandler, “Nonlinear minimax
optimization as a sequence of least pth optimization with finite
values of p,” Faculty Eng., MeMaster Univ., Hamilton, Ont.
Canada, Rep. SOC-3, 1973.

“New algorithms for network optimization,” IEEE Trans.
Micr’owatie Theory Tech., vol. MTT-21, Dec. 1973.
J. R. Popovi6, J. W. Bandler, and C. Charalambous, “General
programs for least pth and near minimax approximation,” Int.
J. Svstems t%., to be published.
J. W. Bandler and T. V. Srinivasan, “Constrained minimax
optimization by grazer search, ‘‘ in Proc. 6th Hawaii Int. Conf.
System Science (Honolulu, Hawaii, 1973), pp. 127–129.
J. W. Bandler and C. Charalambous, “Nonlinear programming
using minimax techniques,” J. Optiraia Theory AppL, vol. 13,
1974:
G. C. Temes and D. A. Calahan. “Computer-aided network
optimization the state-o f-the-art,” Proc. IEEE, VOI. 5, PP.
1832-1863, Nov. 1967.
C. Charalambous, “Nonlinear least pth approximation and
nonlinear programming with applications in the design of net-
works and systems, ” Ph.D. dk.sertation, MeMaster Univ.,
Hamilton, Ont., Canada, Feb. 1973.
C. G. Broyden, “The convergence of a class of double-rank
minimization ahzorithms 2. The new algorithm,” J. Inst.
Math. Applies., ;o1. 6, pp. 222-231, 1970. -
D. Goldfarb, “A famdy of variable metric methods derived by
variational means,” Math. Comput., vol. 24, pp. 23–26? 1970.
D. H. Jacobson and W. Oksmanj “An algorlthm that mmimizes
homogeneous functions of N variables in N + 2 iterations and
ranidlv minimizes aeneral functions.” J. Math. Anal. APPI?.,

v;l. ‘%, pp. 535–555, 1972.
R. Penrosej ‘(A generalized inverse of matrices,” Proc. Cam-
bridge Phil. Sot., vol. 51,, pp. 406413, 1954.
R. Fletcher, “An algorlthm for solving linearly constrained
optimization problems,” Math. Progr:, vol. 2, pp. 133-165,.1972.
M. J. D. Powell, “Recent advances m unconstrained optimiza-
tion,” Atomic Energy Authority, Harwell, England, Rep. T.P.
430. 1970.—_., ----

“Unconstrained minimization and extensions for con-
strai~ts, ” Atomic Energy Authority, Harwell, England, Rep.
T.P. 495, 1972.
N. Adachl, “On variable-metric algorithms,” J. Optinziz.
Theory Appt., vol. 7, pp. 391410, 1971.
H. Y. Huang and J. P. Chambhss, “Quadratically convergent
ahzorithms and one-dimensional search schemes,” J. Optimiz.
T~eory Appt., vol. 11, pp. 175-188, 1973. “

G. P. McCormick and K. Ritter, “Projection method for un-
constrained optimization,” J. Optimiz. Theory Appl., vol. 10,
pp. 57–66, 1972.

S. Hoshino, “A formulation of variable metric methods,”Comput. J.,’vol. 13, pp~ >17–322, 1970. [34]



300 IEEE TRANSACTIONS ON MICROWAVE TliEORY AND TECHNIQUES, VOL. MTT-22, NO. 3, MARCH1974

J. Inst. Math. Its App7., voL 10, PP. 39+403, 1972.
[35] K. W. 13rodie, A. R. Gourlay, and J. Greenstad}, “Rank-one

and rank-two corrections to positive definite matrmes expressed
~o}roduct form,” J. inst. Math. Its Appt., vol. 11, pp. 7>82,
-“. -.

[36] J. W. Bandler, J. R. Popovi& and V. K. Jha, “Cascaded net-
work optimization program,” this issue, pp. 300-308.

[37] John W. Bandler and Berj L. Bardakiian, “Least pth optimiza-
tion of recursive digital filters,” IEEE Trans. Audio Electro-
acoust., vol. AU-21, pp. 460470, Ott. 1973.

[381 J. W. Bandler. N. D. Markettos. and T. V. Srinivasan. “Gra-. .
client minimax techniques for ‘system modeling,” ~nt. J.
L’@t. Sci., vol. 4, pp. 317-331, 1973.

[39] M. R. Osb?rne.and G. A. Watson, “An algorithm for minimax

aPProxlmatIOn m the non-linear case,” Comput. J., Vo]. U, pp.
63-68, 1969.

[40] J. W. Bandler and P. A. Macdonald, “OpttiIzation of micro-
wave networks by razor search,” IEEE Trans. Microwave
Theor~ Tech., vol. MTT-17, pp. 552–562, Aug. 1969.

[41] J. W. Bandler,. T. V. Srinivasan, and C. Charalambous, “Mlni-
max optimization of networks bv grazer search,” IEEE Trans.
Microwave Theory Tech., vol. MTT-20, pp. 59&604, Sept. 1972.

[42] L. S. Lasdon and A. D. Waren, “Optimal design of filters with
bounded, 10SSYelements,” IEEE Trans. Circuit Theory, vol.
CT-13, pp. 175-187, June 1966.

[43] R. Klessig and E. Polak, “A method of feasible directions using
function approximations, with applications to minimax prob-
lems,” J. Math. Anal. Appl., vol. 41, pp. 583-602, 1973.

[44] L. S. Lasdon, Optimization Theory for Large Systems. New
York: Macmillan, 1970.

[45] W. I. Zangwill, Nonlinear Programming: A Unijkd Approach.
Emrlewood Cliffs. N. J.: Prentice-Hall. 1969.

[46] A. ‘D. Waren, L. S. Lasdon, and D. F. Suchman, “Optimization
in engineering design,” P?’oc. IEEE, VO1. 55, pp. 1885–1897,
NOV. 1967.

[47] A. V. Fiacco and G. P. McCormick, “The sequential uncon-
strained minimization technique for nonlinear programming; a
primal-dual method,” Management S’ci., vol. 10, pp. 360-366,
1WA

[48] ~; “Cornpu~ati?nal algorithm for the sequential uncon-
strained muumlzatlon technique for nonlinear programming,”
Management Sci., vol. 10, pp. 601-617, 1964.

[49]

[50]

[51]

[52]

[53]

[54]

[55]

[56]

[57]

[58]

[59]

[60]

[61]

[62]

R. Fletcher, “A class of methods for nonlinear programming
with termination and convergence properties,” in Integer and
Nonlinear Programming, J. Abadie, Ed., Amsterdam, The
Netherlands: North-Holland, 1970.
— “An exact penalty function for nonlinear programming
with’inequalities,” Math. Progra., vol. 5, pp. 129–150, 1973.
J. Kowalik. M. R. Osborne. and D. M. Rvan. “A new method
for constrained optimization problems,” O$er.’ Res., vol. 17, pp-~
973–WR 196!2.. .
T. P&~z~kowski, “An exact potential method for constrained
maxima,” MAM J. Num. Anal., vol. 6, pp. 299–304, 1969.
A. v. Flacco and G. P. McCormick, “Extensions of SUMT for
nonhnear programming: Equahty constraints and extrapolw
tion,” Management i%., vol. 12, pp. 816-829, 1966.
R. R. Allan and S. E. J. Johnsen, “An algorithm for solving
nonlinear programming problems subject to nonlinear in-
equality constraints,” Comput. J., vol. 13, pp. 171–177, 1970.
M. Avriel, “Solution of certain nonlinear programs involving
r-convex functions, ” J. Optimiz. Theory Appl., vol. 11, pp.
159–174. 1973.
A: ‘R. C&nj “Constrained optimization using nondifferentiable
penalty function,” SIAM J. Num. Anal., vol. 10, pp. 760–784,
1972.-----
A. R. Corm and T. Pletrzykowski, “A penalty function method
converging directly to a constrained optimum,” Dep. Com-
binatorics and Optimization, Univ. Waterloo, Waterloo, Ont.,
Canada, Rep. 7>11 1072.
M. J. Best, ‘[FCD:

., -----
: A feasible conjugate direction method to

solve linearly constrained optimization problems,” Dep. Com-
binatorics and Optimization, Univ. Waterloo, Waterloo, Ont.,
Canada, Rep. CORR 72-6, 1972..
M. E. Mokari-Bolhaesan and T. N. Trick, “Computer-aided
design of distributed-lumped-active networks,” IEEE Trans.
Circuit Theory, vol. CT-18, pp. 187–190, Jan. 1971.
R. W. Newcomb, Active Integrated Czrcwit Synthesis. Engle-
wood Cliffs, N. J.: Prentice-Hall, 1968.
John W. Bandler and Rudolph E. Seviora, “Current trends in
network optimization,” IEEE Trans. Microwave Theory Tech.,
vol. MTT-18. un. 1159–1 170. Dec. 1970..,. .
N. D. Markettos, “Optimum system ‘modelling using recent
gradient methods,” M. Eng. dissertation, McMaster Univ.,
Hamilton, Ont., Canada, Apr. 1972.

Cascaded Network Optimization Program

JOHN W, BANDLER, MEMBER, IEEE, JADRANKA R. POPOVI~, AND VIRENllRA K. JHA

Absfracf—A user-oriented computer program package is presented

that will analyze and optimize certain cascaded liiear time-in-

variant electrical networks such as microwave filters and all-pass

networks. The program is organized in such a way that future addi-

tions or deletions of performance specifications, constraints, op-

timization methods, and circuit elements are readily implemented.

Presently, a variety of two-port lumped and dk.tributed elements,

all-pass C-type sections and all-pass D-type sections can be treated

as fixed or variable between upper and lower bounds on the parame-
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ters. Adjoint network sensitivity formulas are incorporated. The

Fletcher-Powell or Fletcher optimization methods can be called to

optimize in the least pth sense of Bandler and Charalambous an

objective function incorporating simultaneously, at the user’s dis-

cretion, input reflection coefficient, insertion 10SS, group delay, and

the parameter constraints (if any). The program is particularly

flexible in the way in which response specifications are handled at

any number of, in general, overlapping frequency bands. The

package, which is written in Fortran IV, has been tested on a CDC

6400 d@al computer.

I. INTRODUCTION

A USER-ORIENTED computer program package is

presented that will analyze and optimize certain

cascaded linear time-invariant networks such as micro-

wave filters and all-pass networks in the frequency domain.


